P(x)=3x^2+5x

Simple and best practice solution for P(x)=3x^2+5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=3x^2+5x equation:



(P)=3P^2+5P
We move all terms to the left:
(P)-(3P^2+5P)=0
We get rid of parentheses
-3P^2+P-5P=0
We add all the numbers together, and all the variables
-3P^2-4P=0
a = -3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-3)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-3}=\frac{0}{-6} =0 $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-3}=\frac{8}{-6} =-1+1/3 $

See similar equations:

| -5x+12+6x=5+x+7 | | -70+9x=26+3x | | x/2+6=11 | | 60/5(7-2)=x | | 100t+250=590 | | (4⋅6x)+(4⋅2)=x | | (x^2)-(2(x))=90 | | 16n2−9=0 | | 12x-91=x+195 | | 21(-x)+12x=44 | | 1+5x=-16+x+3+6 | | -7(7x-6)+1=-49x+43 | | (4x-3)^1/3=2 | | (4⋅6x)+(4⋅2)=0 | | 6x+2=65-x | | 9x-74=-4x+160 | | 3=-4n+7n | | 6x-1x=5x+10 | | -3=-3×2t-1 | | -x/6+31=64 | | 5=8y+7 | | (3x)+5=26 | | 5+2x=-6x+5 | | -7(k-8)=84 | | 2n-8n=12 | | 1.4x+1.5=8.7-x | | -4p+7p=-15 | | a-9+a-9*3+a=39 | | 3x-7=15x-85 | | 8+2x=5x+8 | | 1.1n=4.8 | | 6(4x-1)=0 |

Equations solver categories